- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Pandey, Parul (2)
-
Pompili, Dario (2)
-
Bajwa, Waheed U. (1)
-
He, Qifan (1)
-
Rahmati, Mehdi (1)
-
Tron, Roberto (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pandey, Parul; He, Qifan; Pompili, Dario; Tron, Roberto (, IEEE/RSJ International Conference on Intelligent Robots and Systems)Most of the current solutions for autonomous flights in indoor environments rely on purely geometric maps (e.g., point clouds). There has been, however, a growing interest in supplementing such maps with semantic information (e.g., object detections) using computer vision algorithms. Unfortunately, there is a disconnect between the relatively heavy computational requirements of these computer vision solutions, and the limited computation capacity available on mobile autonomous platforms. In this paper, we propose to bridge this gap with a novel Markov Decision Process framework that adapts the parameters of the vision algorithms to the incoming video data rather than fixing them a priori. As a concrete example, we test our framework on a object detection and tracking task, showing significant benefits in terms of energy consumption without considerable loss in accuracy, using a combination of publicly available and novel datasets.more » « less
An official website of the United States government
